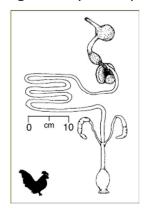
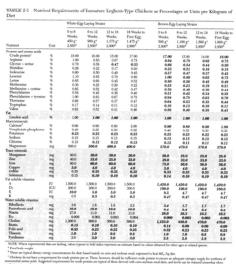
Current Knowledge of Parrot Nutrition

Liz Koutsos, PhD

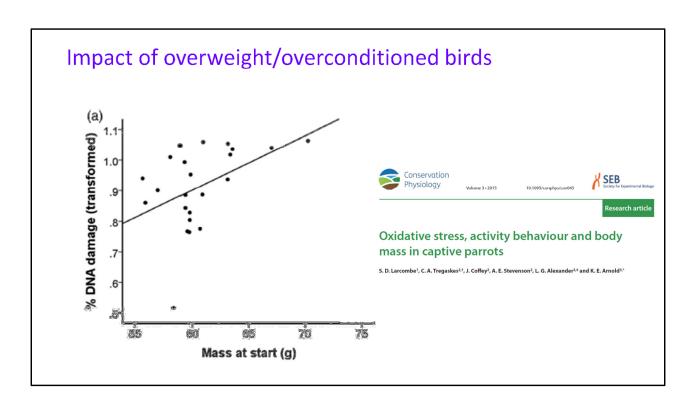

<u>Liz.koutsos@mazuri.com</u> www.mazuri.com



Wild Type Diets	Species name	Feeding strategy	Common diet ingredients ^a	Time lients ^a spent feeding ^b Refer	
• • • • • • • • • • • • • • • • • • • •	Blue and gold macaw	florivore	seeds, fruits, nuts	NR	18
- 1° plant based	(Ara ararauna) Kaka	florivore	10 incorts and master/author Cost	>50% of	23
	(Nestor meridionalis septentrionalis)	nonvoie	1° insects, seeds, nectar/pollen, fruit, sap	day for-	23
- fruits	W. t	0	10.1	aging	21
	Kakapo (Strigops habroptilus)	florivore	1° leaves, also mosses, rhizomes, roots, bark, fruit	NR	31
- seeds	Military macaw	florivore	seeds, nuts, berries, fruits	NR	18
	(Ara militaris)				
- nuts	Buffon's macaw	frugivore	fruits, flowers	NR	1
	(Ara ambigua) Golden parakeet	frugivore	fruits, buds, flowers	NR	2
- some leaves	(Aratinga guarouba)				
sama flavvars	Green-winged macaw (Ara chloroptera)	frugivore	fruits (Hymenaea), palm nuts, seeds	NR	1
- some flowers	Orange-winged amazon	frugivore	fruit (85% from palm fruit)	NR	11
Como incosto reported	(Amazona amazonica)				
 Some insects reported 	Red-bellied macaw (Ara manilata)	frugivore	fruit (96% from palm fruit, flowers, seed pods	NR	117
	Budgerigar	granivore	seeds	NR	20
	(Melopsittacus undulatus)				
	Camaby's cockatoo (Calyptorhynchus funereus latirostris)	granivore	seeds (especially from cones and nuts of Proteaceae)	NR	113
	Cockatiel	granivore	seeds (prefers soft, young over ma-	3 h/d	2
	(Nymphicus hollandicus)		ture, hard seeds)		
Journal of Avian Medicine and Surgery 15(4):257–275, 2001 © 2001 by the Association of Avian Veterinarians	Forest red-tailed cockatoo (Calyptorhynchus banksii naso)	granivore	seeds of two native trees (C calo- phylla and E marginata)	10-12 h/d	3
	Hooded parrot	omnivore	1° seeds (1° sesame), flowers, inver-	NR	3
Review Article	(Psephotus dissimilis)		tebrates		
	Major Mitchell cockatoo (Cacatua leadbeateri)	omnivore	larvae, fruits, seeds	NR	11
Nutrition of Birds in the Order Psittaciformes:	Black cockatoo	omnivore	1° seeds, fruits, flowers, insects/lar-	NR	11
A Review	(Calyptorhynchus species)		vae, pine cones		

- Nutrient regts?
- Limited data in psittacines
- Baseline generally from poultry data

Chicken (*Gallus domesticus*) digestive tract (Stevens & Hume 1995)



*Challeted do not have a requirement for crude protein per art. There, however, should be relificated crude protein to ensure an adequate integers requiple for put announcement animal man also haggined requirements for crude protein per art. There, however, should be relificated crude protein to ensure an adequate integers requiple for put announcement animal and like against the probability of the probability of the religion of the relification of the religion of the relig

- Need to account for different energy reqts vs wild birds

Management scenario	ME requirement (kcal/d)	g fresh fruit/d (2 kg bird)
Indoor cage	154.6 x (BW in kg) ^{0.73}	360
Indoor aviary	176.6 x (BW in kg) ^{0.73}	
Outdoor aviary in warm/hot environment	203.9 x (BW in kg) 0.73	
Outdoor aviary in cold environment	226.1 x (BW in kg) ^{0.73}	
Free ranging	229.2 x (BW in kg) ^{0.73}	542

INSIGHTS ON PSITTACINE NUTRITION THROUGH THE STUDY OF FREE-LIVING CHICKS

A Dissertation

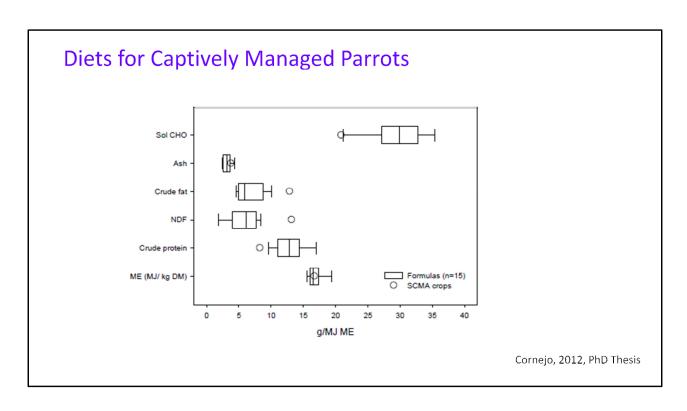
by

JUAN CORNEJO

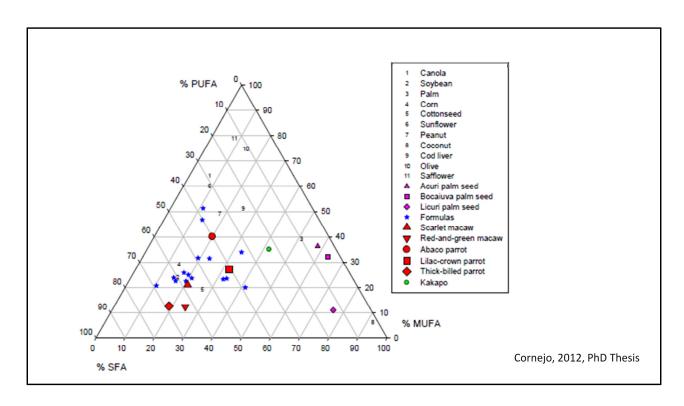
Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2012


- Handrearing challenges
 - particle size
 - separation

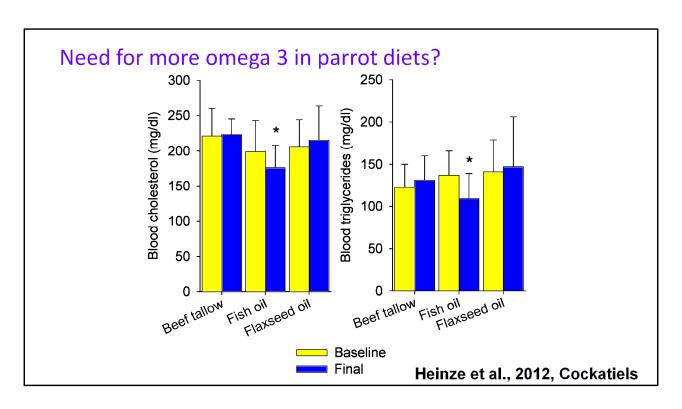
From Cornejo, 2012 PhD Thesis:


"Parrots feed their chicks a regurgitated coarse mix of foods." $\,$

"Largest food particles fed to... Scarlet macaw chicks in Peru averaged 9 x 4.5 mm, and there was little variation with chick age."

	macaw (n = 14)	macaw (n = 5)	Cuban parrot (n = 5)	Lilac-crowned amazon (n = 6)	Thick-billed parrot (n = 2)	(n = 2)	formulas (n = 15)	Acuri and Bocaiuva
Crude fat (%DM)	21.6 ± 6.42	37.7 ± 10.4	30.5 ± 1.46	33.8 ± 8.9	41.4 ± 1.56	-	11.6 ± 4.61	
	(9.53-29.42)	(24.1-36.8)	(29.2-32.5)	(22.5-47.5)	(40.3-42.5)		(7.34-23.6)	
Crude fat (g/MJ ME)	12.4 ± 3.10	18.6 ± 4.06	15.9 ± 0.57	15.3 ± 2.86	18.6 ± 4.06	-	6.73 ± 2.10	
ordae fat (g/lib lile)	(6.34-17.7)	(13.0-23.8)	(15.2-16.5)	(11.5-19.4)	(13.0-23.8)		(4.55-11.5)	
Total FA (% DM)	15.0 ± 5.17	30.9 ± 5.51	19.0 ± 2.74	24.8 ± 4.22	31.8 ± 0.56	7.81 ± 0.11	10.4 ± 4.05	(60.7-
Total I A (% DIVI)	(7.30-24.7)	(25.4-36.8)	(16.0-21.0)	(19.1-29.9)	(31.2-32.3)	(7.73-7.89)	(5.90-22.0)	66.4)
Total FA (g/MJ ME)	8.72 ± 3.07	15.3 ± 1.81	9.91 ± 1.40	11.3 ± 1.21	14.2 ± 0.24	10.2 ± 0.32	6.05 ± 1.92	
TOTAL TA (9/WO WE)	(5.87-15.8)	(13.3-17.5)	(8.29-11.3)	(9.78-12.7)	(14.1-14.4)	(9.96-10.4)	(3.62-10.7)	

Cornejo, 2012, PhD Thesis



NOTE: Data in this document have been presented from others' published works (with references) and should not be used elsewhere without proper referencing.

Need for more omega	3 ir	n parrot	diets?
---------------------	------	----------	--------

	Scarlet macaw (n = 15)	Red-and-green macaw (n = 7)	Cuban parrot (n = 5)	Lilac-crowned amazon (n = 6)	Thick-billed parrot (n = 2)	Kakapo (n = 2)	Commercial formulas (n = 15)
C18:2n6	45.6 ± 13.6	56.0 ± 13.0	25.8 ± 7.81	31.9 ± 9.17	67.7 ± 1.53	6.93 ± 0.86	44.3 ± 9.87
LA	(22.8-64.9)	(25.9-66.5)	(16.5-36.5)	(19.9-43.5)	(66.2-69.3)	(6.3-7.5)	(29.0-68.2)
C18:3 n6	0.00 ± 0.00	0.00 ± 0.00	7.11 ± 3.81	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
GLA	(0.00-0.00)	(0.00-0.00)	(2.92-12.3)	(0.00-0.00)	(0.00-0.00)	(0.00-0.00)	(0.00-0.00
C18:3n3	11.4 ± 9.38	2.24 ±1.55	0.88 ± 0.46	8.70 ± 6.55	0.65 ± 0.14	15.9 ± 1.40	5.03 ± 3.45
ALA	(1.52-37.4)	(0.85-4.79)	(0.43-1.52)	(2.03-18.7)	(0.49-0.75)	(15.0-16.9)	(0.74-15.0)
C20:2n6 Eicosadienoic	1.23 ± 0.75 (0.18-2.40)	0.00 ± 0.00 (0.00-0.00)	0.55 ± 0.25 (0.30-0.93)	0.00 ± 0.00 (0.00-0.00)	0.00 ± 0.00 (0.00-0.00)	0.00 ± 0.00 (0.00-0.00	0.03 ± 0.11 (0.00-0.44)
acid	(0.10-2.40)	(0.00-0.00)	(0.30-0.93)	(0.00-0.00)	(0.00-0.00)	(0.00-0.00	(0.00-0.44)
C20:3n6	0.01 ± 0.02	0.00 ± 0.00	0.99 ± 0.57	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
DGLA	(0.00-0.08)	(0.00-0.00)	(0.38-1.85)	(0.00-0.00)	(0.00-0.00)	(0.00-0.00)	(0.00-0.00
C20:4n6	0.01 ± 0.02	0.00 ± 0.00	0.80 ± 0.63	0.02 ± 0.04	0.00 ± 0.00	0.00 ± 0.00	0.08 ± 0.13
AA	(0.00-0.10)	(0.00-0.00)	(0.13-1.73)	(0.00-0.10)	(0.00-0.00)	(0.00-0.00	(0.00-0.39)
C20:5 n3	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.09 ± 0.31
EPA	(0.00-0.00)	(0.00-0.00)	(0.00-0.00	(0.00-0.00)	(0.00-0.00)	(0.00-0.00	(0.00-1.21)
C22:4n6	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.01 ± 0.04	0.00 ± 0.00	0.00 ± 0.00	0.03 ± 0.07
Adrenic acid	(0.00-0.00)	(0.00-0.00)	(0.00-0.00	(0.00-0.09)	(0.00-0.00)	(0.00-0.00	(0.00-0.24)
C22:6n3	0.04 ± 0.06	0.00 ± 0.00	2.40 ± 1.52	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.12 ± 0.24
DHA	(0.00-0.19)	(0.00-0.00)	(0.66-4.41)	(0.00-0.00)	(0.00-0.00)	(0.00-0.00	(0.00-0.78)

Cornejo, 2012, PhD Thesis

Need for more omega 3 in parrot diets?

Work in quaker parakeets suggest flax = fish (Petzinger et al., 2014, J. An. Phys. An. Nutr.)

Likely species differences in omega-3 needs

Need to consider palatability of omega-3 source

- Often based on offering multiple food items
 - variety contributes to welfare
 - unknown reqts
 - preference (birds and managers)
- Challenges
 - Sorting/selectionof preferred food items

Fledging success based on diet offered	<u>Seed</u> <u>Blend</u>	Extruded Diet
Yellow headed Amazon	75	100
Forstens Lorikeet	62	100
Goldie's Lorikeet	45	83
Blue & Gold Macaw	62	80
Scarlet Macaw	62	100
Ring-necked parakeet	80	100
Rock Peplar Parakeet	88	80
Blue crowned hanging parrot	50	75
Average	66	90

Ullrey DE, Allen ME, Baer DJ. Formulated diets versus seed mixtures for psittacines. *J Nutr.* 1991;121: S193–S205.

- Challenges
 - Diet items are not nutritionally complete

	Whole corn	Proso millet	Flax seed	Milo	Saff- lower	Sun- flower	NRC quail reqs	= energy
Dry matter	86	88	90	87	93	95		
Crude Protein (%)	9.5	12.5	25.0	10.56	17.5	24.0	18	36
Met (%)	0.26	0.34	0.56	0.21			0.30	0.60
Lys (%)	0.29	0.28	0.78	0.23			0.80	1.60
Lipid (%)	4.3	5.5	37.8	3.1	35.0	52.2		
Ca (%)	0.04	0.02	0.40	0.03	0.26	0.13	0.53	1.06
P (%,)	0.30	0.34	1.00	0.28	0.67	0.75	0.45	0.90
Niacin (mg/kg)	27	3	56	30			40	80

Seed based diets offer a lot of variety to the bird. But, also come with problems including nutrient deficiencies. All numbers in red are deficient vs known requirements.

Table 5. Nutrient concentrations by dry weight of diets consumed by 7 captive Amazon parrots offered a mix of seed, produce, and formulated diet compared with published recommendations for large parrots. Consumed diet measurements (mean ± SD) followed by asterisks differ significantly from the mean recommendation.

Recommendations ordered by the lowest and highest values from the olded literature, the mean of which was used for entered by the references what for entered by the references classical.

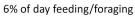
Nutrient		Recogniendations					
	Consumed diet	Lowest	Mean	Highest	Nospenses		
Energy, kJ/g	18.6 ± 0.44		12.6		19		
Protein, %	15.5 ± 0.3	12	16	24	53,9,13,37,38		
Total lipids, %	20.6 ± 3.9***	4	5	7	49,13,37,38		
Ca. %	$0.34 \pm 0.13*$	0.50	0.69	1.10	53,9,13,37,38		
Mg, %	$0.22 \pm 0.02**$	0.06	0.12	0.15	33,9,38		
P. %	0.53 ± 0.02	0.40	0.54	0.80	53,9,13,37,31		
K, %	0.74 ± 0.02	0.40	0.60	0.70	33,9,38		
Na, %	$0.06 \pm 0.02***$	0.15	0.18	0.20	43,9,13,38		
Ca:P ratio	$0.64 \pm 0.02***$	1.0	1.3	1.4	53,9,13,37,3		
Fe, ppm	70.5 ± 11.3***	80	110	150	33,9,38		
Zn, ppm	49.2 ± 6.4	45	72	120	33,9,38		
Cu, ppm	12.4 ± 0.7	8	12	20	33,9,38		
Vitamin A, IU/g	11.1 ± 8.4	3	5	8	33,9,38		
Tryptophan, %	$0.22 \pm 0.01***$		0.12		19		
Threonine, %	$0.59 \pm 0.01***$		0.40		19		
Lysine, %	0.85 ± 0.09	0.60	0.88	1.15	29,38		
Methionine, %	$0.36 \pm 0.03*$		0.25		19		
Arginine, %	$1.44 \pm 0.10***$		0.60		. 19		

Journal of Avian Medicine and Surgery 26(3):149-160, 2012 © 2012 by the Association of Avian Veterinarians

Nutritional Levels of Diets Fed to Captive Amazon Parrots: Does Mixing Seed, Produce, and Pellets Provide a Healthy Diet?

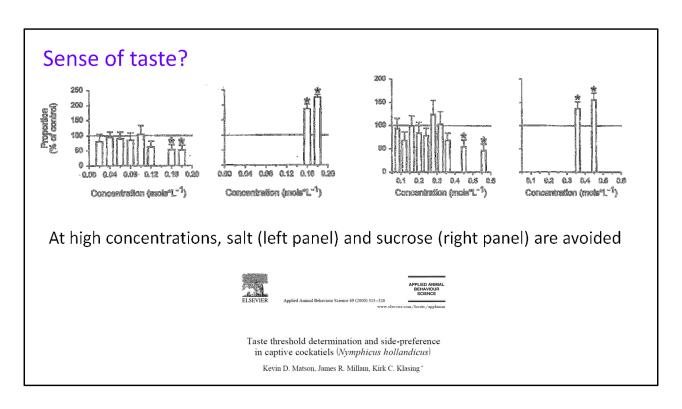
Donald J. Brightsmith, MS, PhD

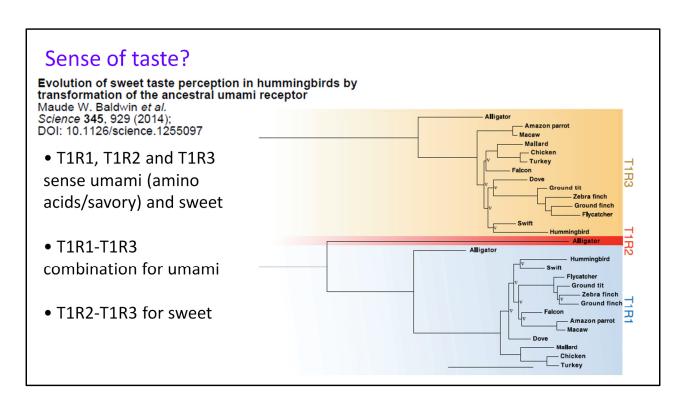
Abbreviations: Ca indicates calcium; Mg, magnesium; P, phosphorus; K, potassium; Na, sodium; Fe, iron; Zn, zinc; Cu, copper.

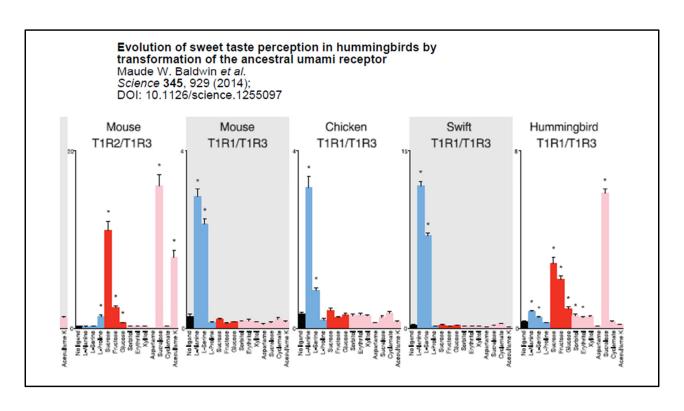

P & Sil.

**

Effect of physical form?







26% of day feeding/foraging

Rozek et al., 2010

Summary

- Absence of empirically determined reqt's for parrots
 - Poultry data
 - Experience and success stories
 - Field data
 - Known pathology
- More work needed to optimize handfeeding diets
 - Differences in wild type diets yet produce similar nutrition
 - Fat? Omega-3?
- Known sorting of mixed food items
 - Optimization of blends to ensure full consumption?
 - Improve palatability of less preferred food item